Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin.
نویسندگان
چکیده
The insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) are broadly used to control insect pests with agricultural importance. The cadherin Bt-R(1) is a binding protein for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R(1) region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. Here, we report that a peptide containing this region expressed in Escherichia coli functions as a synergist of Cry1A toxicity against lepidopteran larvae. Far-UV circular dichroism and (1)H-NMR spectroscopy confirmed that our purified CR12-MPED peptide mainly consisted of beta-strands and random coils with unfolded structure. CR12-MPED peptide bound brush border membrane vesicles with high affinity (K(d) = 32 nM) and insect midgut microvilli but did not alter Cry1Ab or Cry1Ac binding localization in the midgut. By BIAcore analysis we demonstrate that Cry1Ab binds CR12-MPED at high (9 nM)- and low (1 microM)-affinity sites. CR12-MPED-mediated Cry1A toxicity enhancement was significantly reduced when the high-affinity Cry1A-binding epitope ((1416)GVLTLNIQ(1423)) within the peptide was altered. Because the mixtures of low Bt toxin dose and CR12-MPED peptide effectively control target insect pests, our discovery has important implications related to the use of this peptide to enhance insecticidal activity of Bt toxin-based biopesticides and transgenic Bt crops.
منابع مشابه
A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera
Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry...
متن کاملReduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formati...
متن کاملEnhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin.
The Cry3Aa and Cry3Bb insecticidal proteins of Bacillus thuringiensis are used in biopesticides and transgenic crops to control larvae of leaf-feeding beetles and rootworms. Cadherins localized in the midgut epithelium are identified as receptors for Cry toxins in lepidopteran and dipteran larvae. Previously, we discovered that a peptide of a toxin-binding cadherin expressed in Escherichia coli...
متن کاملDifferential protection of Cry1Fa toxin against Spodoptera frugiperda larval gut proteases by cadherin orthologs correlates with increased synergism.
The Cry proteins produced by Bacillus thuringiensis (Bt) are the most widely used biopesticides effective against a range of crop pests and disease vectors. Like chemical pesticides, development of resistance is the primary threat to the long-term efficacy of Bt toxins. Recently discovered cadherin-based Bt Cry synergists showed the potential to augment resistance management by improving effica...
متن کاملA novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin.
Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 35 شماره
صفحات -
تاریخ انتشار 2007